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Abstract. This paper presents an exact analytical solution to the displacement boundary-value problem of elas-
ticity for a torus. The introduced form of the general solution of elastostatics equations allows to solve exactly
a broad class of boundary-value problems in coordinate systems with incomplete separation of variables in the
harmonic equation. The original boundary-value problem for a torus is reduced to infinite systems of linear
algebraic equations with tridiagonal matrices. An analytical technique for solving systems of diagonal form is
developed. Uniqueness of the solutions of vector boundary-value problems involving the generalized Cauchy-
Riemann equations is investigated, and it is shown that the obtained solution for the displacement boundary-value
problem for a torus is unique due to the specific properties of the suggested general solution. The analogy between
problems of elastostatics and steady Stokes flows is demonstrated, and the developed elastic solution is used to
solve the Stokes problem for a torus.
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1. Introduction

This paper investigates solutions of vector boundary-value problems of elasticity for bodies
of a complex geometry, which can be described by toroidal and bispherical coordinates. Due
to the complexity of the body of mathematics accompanying these coordinate systems, we re-
strict ourselves to considering only the displacement boundary-value problem of elasticity for
a torus, which attracted our attention by the challenges related to the multiply-connectedness
of toroidal domains. However, the general approach presented in this paper is equally applica-
ble to all bodies described by the mentioned coordinate systems (i.e., torus, lens-shaped body,
spindle-shaped body, and bi-spheres).

Construction of the analytical solutions to the basic elasticity problems for spatial bodies
is a challenging mathematical task due to the essentially vector nature of these problems. The
most powerful technique yet is the application of curvilinear orthogonal coordinates along
with the Fourier method of separation of variables. Over the past century there has been
significant progress in this area, so now exact solutions are available for virtually all bodies
described by separable coordinates. However, there exists a class of coordinate systems that
do not admit a complete separation of variables in the harmonic equation, but still allow for
solving scalar and vector boundary-value problems of mathematical physics. These curvilin-
ear coordinate systems belong to the family of cyclidal coordinates [5, pp. 518–523], and the
simplest of them are the toroidal and bispherical coordinates that can be used to describe a
torus with a lens-shaped body and bi-spheres with a spindle-shaped body, respectively. The
incomplete separation of variables in the Laplace equation in the cyclide coordinates resulted
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in a relatively rare application of these coordinate systems for solving applied and engineering
problems. Mainly, the bispherical coordinates were used for solving problems for bi-spheres,
while the toroidal coordinates were employed most often in boundary-value problems for a
half-space, where two circular lines were separating boundary conditions of different type.

The first attempt to solve the basic elasticity problems for a torus goes back to Wangerin
[2]. He suggested a general approach for solving elasticity problems for bodies of revolution,
and applied it to the problems for a bi-axial ellipsoid, bi-spheres and a torus. The elasticity
problems for tori and bi-spheres were reduced to infinite systems of linear algebraic equa-
tions of diagonal form with more than thirty diagonals. Unfortunately, in the problem for a
torus the representation for the harmonics in the toroidal regions the functions were chosen
incorrectly. Far later, Soloviev [3] used the technique of generalized analytical functions for
solving axisymmetric problems for elastic tori and an elastic space with a toroidal cavity. The
boundary-value problems were reduced to infinite systems with eight and twelve diagonals,
which were solved numerically. In the papers by Podil’chuk and Kirilyuk [4, 5] the basic elas-
ticity problems for a torus were reduced to infinite systems with five and fourteen diagonals.
Their solutions were obtained numerically by successive truncation.

It was the unwieldy form of the infinite systems obtained in these papers that did not allow
for an analytical solution, so we saw our objective in developing a solution that would yield
equations of the simplest form. In view of that, the most interesting results were obtained
regarding the Stokes-flow problem for toroidal bodies.

Being a linearized form of the Navier-Stokes equations in the approximation of low Rey-
nolds number, the Stokes equations describe very slow (‘creeping’) flows of viscous incom-
pressible fluids [6]. The reader should not be confused with addressing problems of hydro-
dynamics while considering the elastic framework. We will demonstrate that a direct analogy
exists between the Stokes-flow problems and the elastostatics problems for incompressible
solids. In fact, it can be shown that a steady Stokes flow can be regarded as an elastic equilib-
rium of a solid with Poisson ratio equal to 0·5. The simplifications of the axisymmetric Stokes
model allowed Payne and Pell [7] to construct an analytical solution of the Stokes problem
for a torus that did not involve infinite algebraic systems. However, the approach of [7] cannot
be expanded to the general elasticity case. Another interesting approach was suggested by
Wakiya [8], who obtained a tridiagonal infinite system for the axisymmetric Stokes problem
for a torus, but still solved it numerically.

Here we present an exact solution to the displacement boundary-value problem for a torus.
The next section introduces a general solution of elastostatics equations, which is a gener-
alization of the solution for Stokes flow suggested by Wakiya [8], and can be applied to a
broad class of problems in cyclidal coordinates. This general solution enables one to reduce
the original boundary-value problem for a torus to a set of infinite algebraic systems with no
more than three diagonals. In the fourth section we present an analytical technique for solving
the resulting tridiagonal algebraic systems, which can be potentially applied to systems with a
greater number of diagonals. Section 5 discusses the issues pertaining to the uniqueness of the
obtained solution with respect to the double-connectedness of toroidal regions. It is shown that
the introduced form of general solution of the elastostatics equations yields a single-valued
solution of the displacement boundary-value problem for a torus.

As an illustration of the general approach, we revisit the Stokes problem for a torus in
Section 6. However, this does not mean at all that the presented technique is incapable of
solving some new problems. Quite the contrary, we want to highlight the important aspects of
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our approach on a simple, yet physically rich example, and at the same time use the obtained
general solution to present a complete and comprehensive solution to this classical problem.

2. General solution of the elastostatics equation for cyclidal coordinate systems

The displacement boundary-value problem of elasticity consists in finding the vector of elastic
displacement u, which in a homogeneous isotropic solid must satisfy the elastostatics (Lamé)
equation

2
1 − ν

1 − 2ν
grad div u − curl curl u = 0, (1)

subject to the boundary conditions

u|S = U, (2)

where ν is the Poisson ratio, S is the surface of the solid and U is the displacement vector
prescribed on S.

A key role in the presented approach is played by the general solution of the elastostatics
equation (1) that we will develop below. Introducing the notations

div u = −1 − 2ν

2 − 2ν
ϑ and γ = 1

4(1 − ν)
, (3)

we reduce Equation (1) to a non-homogeneous harmonic equation for the displacement vector
u:

�u = 2γ grad ϑ. (4)

Observing that ϑ has to be a harmonic function, we write the general solution of (4) as the
sum of a partial solution of the non-homogeneous equation (4) and the general solution for
the corresponding homogeneous equation:

u = B + γ rϑ, where �B = 0, �ϑ = 0. (5)

Functions B and ϑ are not independent; they have to satisfy the differential constraint

(γ + 1)ϑ + γ r · grad ϑ + div B = 0. (6)

The choice of the general solution to be used in a particular problem is usually determined
by the geometry of the problem. For example, the Papkovich-Neuber general solution

u = B − 1

4(1 − ν)
grad(r · B + B0), �B = 0, �B0 = 0,

works well in the elasticity problems for bodies whose surface represents a plane (e.g., half-
spaces or layers), but produces unwieldy equations for bodies with a complex geometry, such
as a torus. In the following sections we will show that the derived general solution (5)–(6)
leads to the equations of the simplest form in the boundary-value problem (1)–(2) for a torus.
In general, given the similarities between the cyclidal coordinate systems, solution (5)–(6)
will yield the simplest solutions for other bodies described by cyclidal coordinates, such as
spindle- or lens-shaped bodies, or bi-spheres.
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The solution of the elasticity problems for bodies of revolution can often be simplified if
the original boundary-value problem is first formulated in cylindrical polar coordinates, and
then solved using the special curvilinear coordinate system that describes the body surface. In
accordance with this approach, we write functions B, ϑ , and vector u as the Fourier series with
respect to polar angle ϕ of the cylindrical coordinate system {r, z, ϕ}, whose z-axis coincides
with the body’s axis of revolution:

B =
∞∑′

k=0

{
irBrk(r, z)

cos
sin

kϕ + iϕBϕk(r, z)
sin

− cos
kϕ + izBzk(r, z)

cos
sin

kϕ

}
,

ϑ =
∞∑′

k=0

ϑk(r, z)
cos

sin
kϕ,

u =
∞∑′

k=0

{
iruk(r, z)

cos
sin

kϕ + iϕvk(r, z)
sin

− cos
kϕ + izwk(r, z)

cos
sin

kϕ

}
, (7)

Here ir , iϕ , and iz are the basis vectors of the cylindrical coordinates, and the primed sum-
mation

∑′ indicates that the first term of the sum (in our case, the term with k = 0) is
halved.

Harmonicity of the functions B and ϑ determines the equations to be satisfied by their
Fourier components. Noting that Bϕ0 = 0, for all k ≥ 0, we have

�k±1(Brk ± Bϕk) = 0, �kBzk = 0, �kϑk = 0, (8)

where the operator �k is defined by

�k = ∂2

∂r2
+ 1

r

∂

∂r
+ ∂2

∂z2
− k2

r2
.n

The Fourier components of B can be readily expressed as

Brk = φk+1 + ψk−1, Bϕk = φk+1 − ψk−1, Bzk = χk,

where ψ−1 = 0 and functions φk+1, ψk−1, and χk solve equations

�k+1φk+1 = 0, �k−1ψk−1 = 0, �kχk = 0. (9)

By equality (5), the Fourier transforms (7) of the displacement vector u for harmonics with
k ≥ 1 can be written as

uk = φk+1 + ψk−1 + γ rϑk, vk = φk+1 − ψk−1, wk = χk + γ zϑk, (10a)

whereas in the axisymmetric case (k = 0) they are1

u0 = φ1 + γ rϑ0, w0 = χ0 + γ zϑ0. (10b)

In terms of the functions (9) the differential constraint (6) translates into

1We do not consider here the trivial realization of axisymmetric stress field in a body of revolution, known as
pure torsion. In this case, the general solution contains only one non-zero component of the displacement vector
uϕ = − 1

2v0 = − 1
2φ1, with Equation (1) satisfied identically.
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γ

(
1 + 1

γ
+ r

∂

∂r
+ z

∂

∂z

)
ϑk +

(
∂

∂r
+ k + 1

r

)
φk+1 +

(
∂

∂r
− k − 1

r

)
ψk−1 + ∂χk

∂z
= 0.

(11)

Now determine the boundary conditions for the functions (9). Writing the Fourier expan-
sion for vector U in the same way as

u|S=
∞∑′

k=0

{
irUk(r, z)

cos
sin

kϕ + iϕVk(r, z)
sin

− cos
kϕ + izWk(r, z)

cos
sin

kϕ

}
, (12)

then substituting the expressions (10) and (7) for u in (12), then after a minor rearrange-
ment, we find that the functions (9) at the boundary of a solid must satisfy conditions

γ ϑ0

∣∣∣
S

=
(
−1

r
φ1 + 1

r
Uk

)∣∣∣
S
, χ0

∣∣∣
S

=
(z
r
φ1 − z

r
Uk + Wk

) ∣∣∣
S
, (13a)

and for k ≥ 1,

γ ϑk|S =
(

−2

r
φk+1 + 1

r
(Uk + Vk)

) ∣∣∣
S
, ψk−1|S = (φk+1 − Vk)

∣∣∣
S
,

χk|S =
(

2
z

r
φk+1 − z

r
(Uk + Vk) + Wk

) ∣∣∣
S
.

(13b)

Thus, to find the Fourier components (10) of the displacement vector u, one has to solve
the boundary-value problem (13) for the functions φk+1, ψk−1, χk, and ϑk, subject to the
differential constraint (11). Note that (11) is by no means an equation to be solved: the general
form of the functions it contains is already predetermined by Equations (8)–(9). However, the
functions φk+1, ψk−1, χk, and ϑk are not independent; thus having them satisfy the constraint
(11) eliminates the arbitrariness in the solution.

In what follows, we will apply toroidal coordinates to solve the boundary-value problem
(13), where S is a toroidal surface.

3. Exact solution of the boundary-value problem in toroidal coordinates

The previous section demonstrated how the displacement boundary-value problem (1)–(2) for
a body of revolution is reduced to the boundary-value problem (13), (11) for four functions
(9), (8). The differential constraint (11) to be satisfied by these functions complements three
equations of the boundary conditions (13), making a complete system for determining the
functions φk+1, ψk−1, χk , and ϑk.2

A successful solution of a three-dimensional boundary-value problem can be achieved
when an orthogonal and separable system of curvilinear coordinates exists, whose coordinate
surfaces fit the surface of the boundary conditions. For problems involving toroidal bodies,
such a system is given by toroidal coordinates3 , which belong to the family of the cyclidal
coordinates [1, p. 666]. Being a conjugate system of revolution, the toroidal coordinates
{ξ, η, ϕ} relate to the cylindrical coordinates {r, z, ϕ}, where ϕ is the polar angle common
for both systems, as

2In the axisymmetric case (k = 0), there are three functions (φ1, χ0, and ϑ0) and two boundary conditions (13a).
3The toroidal coordinates, as well as other cyclidal coordinate systems, are not completely separable; see below.
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Figure 1. Torus and the toroidal coordiantes.

r = c sinh ξ

cosh ξ − cos η
, z = c sin η

cosh ξ − cos η
, 0 ≤ ξ < ∞, −π < η ≤ π, (14)

where c is the metric parameter. The coordinate surfaces ξ = ξ0 = const represent toroids;
orthogonal to them are surfaces η = η0 = const that generate spherical segments leaning
on the circle r = c in plane z = 0 (see Figure 1b). In the toroidal system, the origin has
coordinates ξ = 0, η = π , the infinitely remote point of space is ξ = 0, η = 0, whereas
points with ξ = ∞ correspond to the circle r = c, z = 0. Given the radii a and b of the
outermost rim of the torus and the torus opening, the parameters c and ξ0 can be found as

c = √
ab, ξ0 = 2arctanh

√
b/a.

The distinguishing property of cyclidal coordinate systems, including the toroidal coordi-
nates, in comparison with other separable coordinate systems (spherical, elliptical etc.), is the
incomplete separation of variables in the Laplace equation and equations of type (9). A solu-
tion of the harmonic equation in a cyclidal system {ξ1, ξ2, ξ3} has the form R(ξ1, ξ2, ξ3)X1(ξ1)

X2(ξ2)X3(ξ3), where R(ξ1, ξ2, ξ3) is the modulating factor [1, pp. 518–519] that must be in-
troduced to make possible the separation of eigenfunctions Xi(ξi). The incomplete separation
of variables in cyclidal coordinates can significantly complicate solution of even the basic
problems of potential theory (see, for example, the paper by Lebedev [9] on potential-theory
problems for a torus of elliptical cross-section).

In the toroidal and bi-spherical coordinate systems, the modulating factor has the form
of the Riemannian radical

√
cosh ξ − cos η, and the eigenfunctions Xi(ξi) are the trigono-

metric/hyperbolic functions and Legendre functions. The separation parameters for toroidal
regions are chosen such that the general solutions of Equations (9) and (8) have the form

ϑk=1

c

√
cosh ξ− cos η

∞∑′

n=0

(An,k cos nη+Ãn,k sin nη)Lk

n− 1
2
(cosh ξ),

φk+1=
√

cosh ξ− cos η
∞∑′

n=0

(Bn,k cos nη+B̃n,k sin nη)Lk+1
n− 1

2
(cosh ξ),

ψk−1=
√

cosh ξ− cos η
∞∑′

n=0

(Dn,k cos nη+D̃n,k sin nη)Lk−1
n− 1

2
(cosh ξ),

χk=
√

cosh ξ− cos η
∞∑′

n=0

(Cn,k sin nη−C̃n,k cos nη)Lk

n− 1
2
(cosh ξ),

(15)

where Lk

n− 1
2
(cosh ξ) denote the Legendre functions of semi-integer index of the first or the

second kind, P k

n− 1
2
(cosh ξ) and Qk

n− 1
2
(cosh ξ) (see, for instance, [10, pp. 433-443], [11, Chap-
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ter 3]. The following integral representations are available for the considered Legendre func-
tions [11, pp. 155–160]:

P k

n− 1
2
(cosh ξ) = +(n + 1/2 + k)

π+(n + 1/2)

π∫
0

cos kτ dτ

(cosh ξ + sinh ξ cos τ)1/2−n
, (16a)

Qk

n− 1
2
(cosh ξ) = (−1)k

2
√

2π
+(k + 1/2)

π∫
−π

sinhkξ cos nτ dτ

(cosh ξ − cos τ)k+1/2
. (16b)

The asymptotic behavior of the Legendre functions with argument approaching infinity or
unity [11, pp. 163–164] dictates that functions Qk

n− 1
2
(cosh ξ) must be used in the expansions

(15) for the inner problems, and P k

n− 1
2
(cosh ξ) for outer problems for a torus.

The constants of integration An,k, . . . ,Dn,k , and Ãn,k, . . . , D̃n,k in the functions (15) have
to be determined from the boundary conditions (12) and Equation (11). Let us first consider
the equality (11). It is easy to verify that each summand in the differential constraint (11)
satisfies the equation �k(·) = 0, i.e.,

�k

(
ϑk + ϑk

γ
+ r

∂ϑk

∂r
+ z

∂ϑk

∂z

)
= 0, . . . , �k

(
∂χk

∂z

)
= 0,

and, consequently, the left-hand side of (11) is a solution to the equation �k(·) = 0. Therefore,
on inserting representations (15) in Equation (11), it transforms to√

cosh ξ− cos η
∞∑
n=0

({. . . } cos nη + {.̃ . .} sin nη)Lk

n− 1
2
(cosh ξ) = 0, (17)

where the terms in braces contain linear combinations of coefficients (15), tilded and untilded
separately. Evidently, for Equation (17) to hold for all values of ξ and η, the terms in braces
must be equal to zero. This yields two separate infinite sets of linear algebraic equations with
respect to the tilded and untilded coefficients (15). To shorten the presentation, we consider
here only the untilded constants:

γ
(
(1/2+1/γ )A0,k + (k+1/2)A1,k

)
− (k+1/2)2B0,k

−(k+1/2)(k+3/2)B1,k − D1,k + D0,k + (k+1/2)C1,k = 0,

γ
(
(n+k+1/2)An+1,k + (1+2/γ )An,k − (n−k−1/2)An−1,k

)
−(n+k+3/2)(n+k+1/2)Bn+1,k + 2(n+k+1/2)(n−k−1/2)Bn,k

−(n−k−1/2)(n−k−3/2)Bn−1,k − Dn+1,k + 2Dn,k − Dn−1,k

+(n+k+1/2)Cn+1,k − 2nCn,k + (n−k−1/2)Cn−1,k = 0, n ≥ 1,

(18)

where Ck
0 = 0. The system for the tilded constants has the same form but does not contain the

first equation for n = 0.
Now we make use of the boundary conditions (13). Note that equalities (13) represent the

functions ϑk, ψk−1, and χk at the boundary ξ = ξ0 in terms of the boundary values of function
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φk+1. Consequently, substitution of the expansions (15) in the boundary conditions (13) yields
an expression for the constants An,k, Cn,k,Dn,k in terms of some new unknowns xn,k, which
are nothing but the normalized coefficients Bn,k of function φk+1:4

γA0,k = −2κ0,k cosh ξ0 x0,k + 2κ0,kx1,k + κ0,k p0,k,

γAn,k = −2κn,k cosh ξ0 xn,k + κn,k(xn+1,k + xn−1,k) + κn,k pn,k, n ≥ 1,

Bn,k = λn,k xn,k, n ≥ 0; Cn,k = κn,k(xn−1,k − xn+1,k) + κn,k sn,k, n ≥ 1,

Dn,k = γn,k xn,k + γn,k qn,k, n ≥ 0.

(19)

Here pn,k, qn,k, and sn,k are the Fourier coefficients of the following functions:

√
cosh ξ0 − cos η (Uk + εkVk) = δk

∞∑′

n=0

(pn,k cos nη + p̃n,k sin nη),

− εkVk√
cosh ξ0 − cos η

= εk

∞∑′

n=0

(qn,k cos nη + q̃n,k sin nη),

Wk sinh ξ0 − (Uk + εkVk) sin η√
cosh ξ0 − cos η

= δk

∞∑′

n=0

(sn,k sin nη − s̃n,k cos nη),

(20)

and κn,k, γn,k, and λn,k have the form

κn,k = δk

sinh ξ0 L
k

n− 1
2 (cosh ξ0)

, γn,k = εk

Lk−1
n− 1

2 (cosh ξ0)

, λn,k = 1

Lk+1
n− 1

2 (cosh ξ0)

. (21)

Coefficients δk and εk have been introduced to the formulas (20)–(21) to make them acco-
modate, along with the general asymmetric instances k ≥ 1, the axisymmetric case k =
0:

δ0 = 1/2, ε0 = 0, δk = εk = 1, k ≥ 1.

Finally, by plugging expressions (19)–(21) into the derived Equations (18), for each har-
monic k ≥ 0, we obtain an infinite system of algebraic equations with respect to variables
xn,k:

an,k xn+1,k − bn,k xn,k + cn,k xn−1,k = dn,k, n ≥ 0, c0,k = 0. (22)

The coefficients of the first equation (n = 0) in (22) equal to

a0,k = −(2k + 1)κ1,k cosh ξ0 + (1 + 2/γ )κ0,k − (k + 1/2)(k + 3/2)λ1,k − γ1,k,

b0,k = (1 + 2/γ )κ0,k cosh ξ0 − (2k + 1)κ1,k + (k + 1/2)2λ0,k − γ0,k,

d0,k = γ1,k q1,k − γ0,k q0,k − (1/2 + 1/γ )κ0,k p0,k − (k + 1/2)κ1,k p1,k − (k + 1/2)κ1,k s1,k,

(23)

while for n ≥ 1 they are

4The corresponding formulas for the tilded constants are identical to the above ones, except for the case n = 0.
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an,k = −2(n + k + 1/2)κn+1,k cosh ξ0 + (2n + 1 + 2/γ )κn,k

−(n + k + 1/2)(n + k + 3/2)λn+1,k − γn+1,k,

bn,k = 2(1 + 2/γ )κn,k cosh ξ0 − 2(n + k + 1/2)κn+1,k

+2(n − k − 1/2)κn−1,k − 2(n + k + 1/2)(n − k − 1/2)λn,k − 2γn,k,

cn,k = 2(n − k − 1/2)κn−1,k cosh ξ0 + (−2n + 1 + 2/γ )κn,k

−(n − k − 1/2)(n − k − 3/2)λn−1,k − γn−1,k,

dn,k = γn+1,k qn+1,k − 2γn,k qn,k + γn−1,k qn−1,k

−(n + k + 1/2)κn+1,k pn+1,k − (1 + 2/γ )κn,k pn,k

+(n − k − 1/2)κn−1,k pn−1,k − (n+k+1/2)κn+1,k sn+1,k

+2nκn,k sn,k − (n−k−1/2)κn−1,k sn−1,k.

(24)

The infinite system for the variables x̃n,k associated with tilded constants in (15) has the form

an,k x̃n+1,k − bn,k x̃n,k + cn,k x̃n−1,k = d̃n,k, n ≥ 1, x̃0,k = 0, (25)

where d̃n,k, n ≥ 1 have the form similar to dn,k in (24):

d̃n,k= γn+1,k q̃n+1,k − 2γn,k q̃n,k + γn−1,k q̃n−1,k − (n + k + 1/2)κn+1,k p̃n+1,k

−(1 + 2/γ )κn,k p̃n,k + (n − k − 1/2)κn−1,k p̃n−1,k

−(n+k+1/2)κn+1,k s̃n+1,k + 2nκn,k s̃n,k − (n−k−1/2)κn−1,k s̃n−1,k,

provided that q̃0,k = p̃0,k = 0.
Reduction of the displacement boundary-value problem for a torus to the three-diagonal

infinite systems (22), (25) represents an exact solution of the boundary-value problem (1)–(2)
in terms of the solvability of the basic potential-theory problems in toroidal regions. Indeed,
it can be demonstrated that the Neumann problem for the equation �k(·) = 0 in a toroidal
region reduces to equations of type (22), implying that harmonics in a toroidal-region function
cannot be determined simpler than by a set of tridiagonal infinite systems, unless its value is
specified at the whole boundary.5

Given that the displacement boundary-value problem of elasticity cannot be reduced to
pure Dirichlet problems for harmonic functions, the obtained tridiagonal infinite systems of
algebraic equations (22), (25) qualify as an exact solution of the boundary-value problem
(1)–(2) for a torus.

We strengthen this result by presenting analytical techniques for solving the tridiagonal
systems of type (22), thereby finalizing the construction of an exact analytical solution of the
displacement boundary-value problem of elasticity for a torus.

5The Dirichlet problem for a torus has an exact solution, i.e., the coefficients of the harmonic function are de-
termined directly as the Fourier transforms of its boundary value. The Neumann problem for a torus features a
similar solution in the axisymmetric case only, due to the fact that for k = 0 the corresponding tridiagonal system
can be split into two bidiagonal ones.
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4. Solution of infinite algebraic systems of diagonal form

An analytical technique for solving systems of type (22) with three variables in a row was
suggested by Kutsenko and Ulitko [12]. According to [12], the original tridiagonal infinite
system of algebraic equations

an xn+1 − bn xn + cn xn−1 = dn, c0 = 0, n ≥ 0, (26)

can be reduced to successively solving two bidiagonal systems

ān

1 − βn

xn+1 − xn = Yn, n ≥ 0; Yn − c̄n

1 − βn

Yn−1 = d̄n

1 − βn

, n ≥ 1, (27)

where ān = an/bn, c̄n = cn/bn, d̄n = dn/bn, and βn is a finite continuous fraction:

βn = c̄nān−1

1 − βn−1
, β0 = 0, or βn = c̄nān−1

1 − c̄n−1ān−2
1−···

. . .

1 − c̄1ā0

1 − 0
.

The above bidiagonal systems have analytical solutions

xn = −Yn −
∞∑

k=n+1

Yk

k−1∏
s=n

ās

1 − βs

, n ≥ 0,

Yn = d̄n

1 − βn

+
n−1∑
k=0

d̄k

1 − βk

n∏
s=k+1

c̄s

1 − βs

, n ≥ 0.

We present a different approach that can be applied to systems with a greater number of
variables in a row. To illustrate the idea on the tridiagonal system (26) let us try a solution of
(22) in the form

xn = αn

∞∑
j=n

yj , n ≥ 0, (28)

where yj are the new unknowns, and the coefficients αn are undetermined so far. Substituting
(28) in (26) we have

(anαn+1 − bnαn + cnαn−1)

∞∑
j=n+1

yj − (bnαn − cnαn−1)yn + cnαn−1yn−1 = dn, n ≥ 0.

If one requires the coefficients αk
n to satisfy the conditions

anαn+1 − bnαn + cnαn−1 = 0, n ≥ 0, c0 = 0, (29)

then yn will be determined from the bidiagonal system

anαn+1yn − cnαn−1yn−1 = −dn, n ≥ 0, c0 = 0, (30)

whose exact solution is
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yn = − 1

anαn+1αn

αn dn +
n−1∑
j=0

αj dj

n−1∏
i=j

ci+1

ai

 , n ≥ 0. (31)

To obtain a solution of the homogeneous equations (29) that involves only one arbitrary
constant, we rewrite (29) in the form

a0α1 = b0α
∗
0 , a1α2 − b1α1 = −c1α

∗
0 , anαn+1 − bnαn + cnαn−1 = 0, n ≥ 2, (32)

where α∗
0 = const �= 0. Then, solution of (29) can be obtained by recursion:

α−1 = 0, α0 = α∗
0 , αn = 1

an−1
(bn−1αn−1 − cn−1αn−2), n ≥ 1. (33)

Note that constant α∗
0 may be assigned an arbitrary non-zero value, since it cancels out after

substituting (33) in the expressions (31).
The formal proof of convergence for the presented solutions requires the use of theories

of continued fractions and sequence transformations, and is beyond the scope of this paper.
Nevertheless, convergence in formulas (28)–(33) can be verified in every particular case by
the analysis of the coefficients of system (26). For example, for the problems involving the
torus’ exterior, such as the Stokes problem for a torus considered in Section 6, the coefficients
of the systems (22), (25) converge exponentially to zero, making their solutions converge as
well.

5. On the uniqueness of the solutions for the boundary-value problems of elasticity in
toroidal regions

Besides incomplete separation of variables in toroidal coordinates, the displacement boundary-
value problem for a torus features one more challenge in constructing the solution.

The problem is that certain classes of vector boundary-value problems may not be uniquely
solved in multiply-connected regions. In particular, vector boundary-value problems that in-
volve the Cauchy-Riemann equations require additional analysis of the single-valuedness of
their solutions. To such a class of problems belong the boundary-value problems of elastic-
ity, where the elastostatics equation (1) ‘contains’ the so-called generalized Cauchy-Riemann
equations.

To show that solving the elastostatics equations always involves solving equations of
Cauchy-Riemann type, we write (1) as two consecutive systems of the fundamental equations
for vector fields curl ω = −grad ϑ,

div ω = 0,


curl u = ω,

div u = − 1 − 2ν

2(1 − ν)
ϑ.

(34)

Each pair of equations in (34) restores a vector field by its vorticity and divergence. Along with
the Lamé equation, systems (34) represent an invariant form of the equations for equilibrium
of an elastic medium, but in contrast to (1), they emphasize the structure of the displacement
and vorticity fields in an elastic solid.

By representing, similarly to (7), the vorticity vector ω by its Fourier series with compo-
nents ωrk, ωϕk , and ωzk, from the first system of (34), one can derive two sets of generalized
Cauchy-Riemann equations
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∂

∂r
∓ k ∓ 1

r

)
=±

k = −∂>±
k

∂z
,

∂=±
k

∂z
=

(
∂

∂r
± k

r

)
>±

k , (35)

where the functions =±
k and >±

k contain the Fourier components of vorticity ω and ‘dilatation’
ϑ :

=±
k = ωrk ± ωϕk, >±

k = ωzk ± ϑk.

Note that at infinity (r, z → ∞) both ‘+’ and ‘−’ systems (35) become identical to the
classical Cauchy-Riemann equations governing the real and imaginary parts of an analytic
function of a complex variable [1]. This observation makes clear the analogy between (35)
and the regular Cauchy-Riemann equations, and supports the conjecture that solutions of both
types of systems should reveal similar properties. Namely, in the same way that analytic func-
tions must satisfy some predetermined constraints to be single-valued in a multiple-connected
region, the functions =±

k and >±
k have to satisfy certain conditions to be unique solutions to

the Equations (35).6

To show this, first observe that the functions =±
k , >±

k in (35) must satisfy the equations

�k∓1=
±
k = 0, �k>

±
k = 0,

and therefore can be presented in toroidal coordinates as

=±
k =√

cosh ξ − cos η
∞∑′

n=0

(X±
n,k sin nη − X̃±

n,k cos nη)Lk∓1
n− 1

2
(cosh ξ),

>±
k =√

cosh ξ − cos η
∞∑′

n=0

(Y±
n,k cos nη + Ỹ±

n,k sin nη)Lk

n− 1
2
(cosh ξ).

(36)

Then, to ensure the single-valuedness of the functions (35) one must require their coefficients
to satisfy the following conditions:

∞∑′

n=0

Y+
n,k = 0,

∞∑′

n=0

Y−
n,k

k∏
j=1

[
n2 − (j − 1/2)2

]
= 0, (37)

(as before, we make our arguments for the untilded coefficients). There are no constraints for
the series X±

n,k. The physical reasoning behind relations (37) can be easily demonstrated for
the torus exterior. Let the functions =±

k be expressed in terms of >±
k from Equations (35) in

the following way:

r∓k+1=±
k =

∫
L

r∓k+1

{
−∂>±

k

∂z
dr +

(
∂>±

k

∂r
± k

r
>±

k

)
dz

}
, (38)

6The single-valuedness of the solutions of equations of type (35) is closely connected to the so-called generalized
Dirichlet problem for analytic functions in the complex plane [13, pp. 367–390], [14, pp. 163–186]. This problem
consists in finding a harmonic function by its boundary value, subject to the condition that its conjugate by the
Cauchy-Riemann conditions counterpart must be single-valued in the same region. In [13, pp. 367–390], [14,
pp. 163–186] it was demonstrated that the solution of the generalized Dirichlet problem for a planar single-
connected region exists and is unique. However, for the existence of the solution in multiply-connected planar
regions some predetermined constraints must be imposed on the boundary value of the sought harmonic function.
Evidently, this result should also hold for the generalized Cauchy-Riemann equations (35).
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where L is an arbitrary curve in the cross-sectional half-plane {r ≥ 0 | ϕ = const}. If one
wants the functions =±

k determined by (38) to be single-valued in a double-connected region,
then the integrals (38) must vanish on an arbitrary closed contour L lying in the region. Taking
L as a circle ξ = ξ1 enclosing the torus and doing the integration, we obtain the relations (37).

Another way to derive the constraints (37) is to use the recursive relations between the
Legendre functions of adjacent indices [11, pp. 160–162]. Since these relations are identical
for both functions P k

n− 1
2
(cosh ξ) and Qk

n− 1
2
(cosh ξ), equalities (37) must hold in the interior,

as well as in the exterior of a torus.
Similarly, it can be shown that the coefficients Y±

n,k are always uniquely determined by
known the constants X±

n,k. This ‘asymmetry’ in the solvability of the generalized Cauchy-
Riemann equations in toroidal domains is caused by the presence of the Riemannian radical
in the expressions (36) for the functions =±

k and >±
k .

Now we show that the introduced form (5) of the general solution of the elastostatics
equations ensures the uniqueness of the solution of the boundary-value problem (1)–(2) in
toroidal regions. Indeed, in terms of functions (15) conditions (37) become

(kγ + 1)
∞∑′

n=0

An,k = (2k2 + k)

∞∑′

n=0

Bn,k, (2 − 2kγ )
∞∑′

n=0

An,k

k∏
j=1

[
n2 − (j − 1/2)2

]
= (4k2 − 2k)

∞∑′

n=0

Dn,k

k−1∏
j=1

[
n2 − (j − 1/2)2

]
.

(39)

Then, on summing Equations (18) multiplied by the factors 1 and
k∏

j=1

[
n2 − (j − 1/2)2

]
,

respectively, we find that conditions (39) turn into identities, if constants An,k, Bn,k, Cn,k, and
Dn,k satisfy Equations (18).

Let us emphasize again that the identical fulfillment of (37), and consequently, the unique-
ness of the obtained solution of the displacement boundary-value problem for a torus are
ensured by the specific form of the general solution (5)–(6). Other forms of general solution
may require additional argumentation for satisfying the conditions of type (37). An example
of a general solution that yields a non-unique solution of a vector boundary-value problem in
a toroidal region is presented in the next section within the scope of the Stokes problem for a
torus.

6. Example: The Stokes problem for a torus

The comprehensiveness of the developed solution for the displacement boundary-value prob-
lem for a torus makes the author reluctant to illustrate the approach by putting some numbers
into the general formulas. Ultimately, such an example will be no more than an exercise in
developing the Fourier expansions (2), (20) for the boundary conditions, with subsequently
plugging the calculated Fourier coefficients into the right-hand side of Equations (22). Instead,
we invite the reader to revisit a classical problem of axisymmetric motion of a rigid torus in
an unbounded Stokes flow. We will show how the elastic solutions may be applied to the
problems of viscous incompressible flows, and discuss two different approaches to solving
the Stokes problem for a torus. One of them uses the presented elasticity solution, while the
other will illuminate the ideas of Section 5. We will also demonstrate the relationship between
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these two approaches, and how one of them can be used to derive an elegant solution for the
other.

The most significant contribution to the Stokes problem for a torus can be found, in our
opinion, in the papers by Pell and Payne [7] and Wakiya [8] that feature the two mentioned
approaches to the construction of the solution. However, it was the unanswered questions left
in both these papers that, in fact, stimulated our initial interest in the presented work. Here we
present a complete solution to the Stokes problem for a torus, and demonstrate how the quite
different approaches of [7] and [8] relate to each other.

6.1. MOTION OF A TORUS IN A VISCOUS STOKES FLOW

The term ‘Stokes problem’ with respect to a particular body usually addresses the problem
of a slow, steady motion of that body in a viscous incompressible fluid, or, equivalently, a
problem of steady viscous flow about the body [6]. The name attributes to G. G. Stokes, who
first formulated and solved the problem of the motion of a rigid sphere in a viscous fluid [15].

We will employ the general elasticity solution developed above to solve the Stokes problem
for a torus. Given that the Stokes problem is essentially a hydromechanics problem, this kind
of approach can be justified by means of the analogy between the boundary-value problems
of elastostatics and those of steady Stokes flows of viscous fluid that we present below.

The Stokes equations

curl curl u = − 1

µ
grad p, div u = 0, (40)

describe slow flows of viscous incompressible fluids [6, pp. 58–62]. Here u is the velocity
vector, p is the hydrostatic pressure, and µ is the dynamic viscosity coefficient. Equations (40)
represent a linearized form of the general Navier-Stokes equations in the approximation of
low Reynolds number [6, pp. 23–29, 40–42]. The second equation of (40) is the continuity
equation that prescribes the fluid incompressibility. Writing the Stokes equations in a form
similar to (34):{

curl ω = − 1
µ

grad p,

div ω = 0,

{
curl u = ω,

div u = 0,
(41)

and setting in (34) ν = 1/2 (i.e., medium is incompressible) and ϑ = p/µ, we observe
that both the Lamé equation (1) and the Stokes equations (40) reduce to the same system of
equations for the vector fields in (41). Hence, equilibrium of an elastic incompressible solid
and steady flow of a Stokes fluid are governed by the same equations. In the framework of
the Stokes problem u and µ represent the velocity vector and dynamic viscosity coefficient,
whereas in elasticity they stand for the elastic displacement and shear modulus respectively.7

So, consider the problem of determining the velocity and pressure fields in a viscous
incompressible flow due to a steady translation of a rigid toroidal body along its symmetry
axis, which is assumed to coincide with the axis Oz of the cylindrical coordinates. Besides
being a solution of the Stokes equations (40), u and p must satisfy the boundary conditions
that in the cylindrical coordinates have the form [6, p. 29]

ur |S = 0, uz|S = V ; p|∞ = p∞, (42, 43)

7The considered analogy between elasticity and Stokes flow problems does not span the dynamic problems.
Indeed, note that the acceleration term enters the Lamé equation as ∂2u/∂t2, whereas in the dynamic Stokes
equations it reads as ∂u/∂t .
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where V is the translation velocity, an S is the torus’s surface. Equalities (42) reflect the
general property of viscous flows, i.e., adherence of the fluid particles to the body’s surface.
And without loss of generality, the constant hydrostatic pressure at infinity p∞ is assumed to
be zero.

Below we demonstrate how the general theory considered in the previous sections can be
used to construct a complete and comprehensive solution for the Stokes problem (40), (42) for
a torus. In view of the presented analogy between problems of elastostatics and Stokes flows,
one can obtain the solution for the Stokes problem for a torus by adapting the developed
general solution of the displacement boundary-value problem of elasticity for toroidal bodies.
However, we will defer the application of this approach for a few pages, and first consider
the traditional method for solving the Stokes-flow problems, the so-called stream function
approach. After that we will show how these two approaches relate to each other, and how to
use one of them to construct the solution for the other.

6.2. SOLUTION OF THE STOKES PROBLEM FOR A TORUS USING STREAM FUNCTION

The traditional approach [6, pp. 96–100] to solving the axisymmetric Stokes equations is to
represent the velocity vector u as8

ur = −∂B

∂z
, uz = 1

r

∂

∂r
(rB) . (44)

This representation satisfies identically the second equation in (40); the first equation yields
the condition to be satisfied by function B:

�1�1B = 0. (45)

In terms of function B the boundary conditions (42) become

B|S = V

2

(
r + λ

r

)∣∣∣∣
S

,
∂B

∂n

∣∣∣∣
S

= V

2

∂

∂n

(
r + λ

r

)∣∣∣∣
S

, (46)

where n is the normal to the surface S of the torus. The unknown constant λ attributes to
the multiple-connectedness of torus surface, and has to be determined from the solution of
the problem. For single-connected bodies, λ is always zero. It turns out that to determine the
value of λ, one has to consider the solvability problem for the generalized Cauchy-Riemann
equations. Failure to determine the correct value of λ leads to physically inadequate results,
as in [16].

The explicit form of function B in the toroidal coordinates is required to solve the boundary-
value problem (46). First, observe that B, as a general solution of Equation (45), admits the
next representation by two harmonic functions:

B = C1 + rP, �1C1 = 0, �P = 0. (47)

Taking into consideration that the problem at hand is an exterior problem, and omitting the
coefficients that will cancel out after satisfying the boundary conditions (46), we write the
representations for the functions C1 and P in the toroidal coordinates as

8Function B defined by (44) differs from the from the classical stream function ψ introduced in [6, pp. 96–100]:
B = −ψ/r . The choice of either function in representation of type (44) is merely a matter of convenience.
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C1 = √
coshξ − cos η

∞∑′

n=0

Dn cos nηP 1
n− 1

2
(coshξ),

P = 1

c

√
cosh ξ − cos η

∞∑′

n=0

En cos nηP
n− 1

2
(coshξ).

(48)

Combining (48) and (47), we obtain the general form of function B in the toroidal coordinates:

B = 1

2
√

coshξ − cos η

{
g0P

1
1
2
(cosh ξ) + h0coshξ P 1

− 1
2
(cosh ξ)

+
∞∑
n=1

(
gnP

1
n− 3

2
(coshξ) + hnP

1
n+ 1

2
(coshξ)

)
cos nη

}
,

(49)

where coefficients gn and hn of function B are expressed in terms of the coefficients of C1

and P as

g0 = 2E0 − D1, h0 = D0 − 2E0,

gn = n + 1/2

n
Dn − Dn−1 − En

n
, n ≥ 1,

hn = n − 1/2

n
Dn − Dn+1 + En

n
, n ≥ 1.

(50)

Substituting the representation (49) in both equalities of the boundary conditions (46), we
obtain a separate system of two linear algebraic equations with respect to gn and hn for each
n ≥ 0. The right-hand sides of these equations are linear in λ (recall that the unknown constant
λ enters the right-hand sides of the boundary conditions (46) linearly), therefore coefficients
gn and hn of function B have the form

gn = g(1)
n + λ

c2
g(2)
n , hn = h(1)

n + λ

c2
h(2)
n , (51)

where the explicit expressions for g(1,2)
n and h(1,2)

n are furnished in the Appendix.
The value of λ in (51) cannot be determined from the boundary-value conditions (46).

Instead, the choice of λ is justified by the uniqueness of the solution of the boundary-value
problem (42), i.e., the velocity vector u as well as the hydrostatic pressure p must be single-
valued in the flow region.

According to the discussion in the preceding section, the unique solution of elastostatics
boundary-value problems in toroidal regions is achieved by imposing conditions (37) on the
components of vorticity and dilatation in the medium. In the context of the Stokes problem
for a torus, these conditions acquire a transparent physical meaning. Indeed, since the velocity
components ur and uz are uniquely determined by the function B (44), then for any value of
λ in (51) they are single-valued functions of the spatial coordinates. However, the hydrostatic
pressure p cannot be directly determined from the solution of the boundary-value problem
(46) for function B. To find p = ϑµ, one has to solve the generalized Cauchy-Riemann
equations (35), whose unique solution is guaranteed by the conditions of type (37).

Given the axial symmetry of the considered problem, Equations (35) reduce to a single
system governing vorticity ω and pressure ϑ = p/µ in the fluid:
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∂

∂r
+ 1

r

)
ω = −∂ϑ

∂z
,

∂ω

∂z
= ∂ϑ

∂r
. (52)

Simplifying the notations (36), we present ω = =±
0 and p/µ = ϑ = >±

0 as

ω = − 1

c2

√
coshξ − cos η

∞∑′

n=0

ωn cos nηP 1
n− 1

2
(coshξ),

p = µ

c2

√
coshξ − cos η

∞∑
n=1

pn sin nηPn− 1
2
(coshξ).

(53)

With regard to functions (53), the uniqueness condition of type (37) reads:

∞∑
n=0,1

ωn = 0. (54)

Then, from (44) it follows that ω = ∂ur

∂z
− ∂uz

∂r
= −�1B, and after somewhat tedious but

straightforward transformations we find

∞∑′

n=0

ωn = −3

2

∞∑
n=0

(gn + hn). (55)

Finally, relationships (54) and (55) yield an expression for λ:

λ

c2
= −

∞∑
n=0

(
g(1)
n + h(1)

n

)/ ∞∑
n=0

(
g(2)
n + h(2)

n

)
. (56)

The Fourier coefficients pn of the hydrostatic pressure p can be restored by the known vortic-
ity coefficients ωn using the equations (52)9 :

pn = −(n − 1/2)ωn +
∞∑

j=n+1

ωj = −(n − 1/2)ωn −
n∑

j=0

′ωj .

An expression of type (56) was also derived in the paper by Pell and Payne [7], but their
argumentation was rather vague. Section 5 of the present paper justifies the condition (54) and
the subsequent expression (56) from the general viewpoint of solvability of the equations for
vector fields and the generalized Cauchy-Riemann equations in the double-connected toroidal
regions.

6.3. APPLICATION OF THE GENERAL ELASTICITY SOLUTION TO THE STOKES PROBLEM

An alternative way to solve the considered Stokes problem for a torus is to employ the general
solution (10) for the axisymmetric case (k = 0):

ur = 1

2
u0, uz = 1

2
w0, (57a)

9Equations for coefficients ωn and pn are derived in a way similar to the derivation of Equations (18). Each of
the Equations (52) yields an infinite system of linear algebraic equations that is bidiagonal either in terms of ωn

or pn, and therefore can be solved explicitly.
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where in expressions (10) for u0 and w0 we set ν = 1/2 and ϑ = ϑ0/2 = p/µ:

u0 = φ1 + r

µ
p, w0 = χ0 + z

µ
p. (57b)

The functions p, φ1, and χ0 are not independent, and have to satisfy the differential constraint
(11) with k = 0:(

3 + r
∂

∂r
+ z

∂

∂z

)
p

µ
+

(
∂

∂r
+ 1

r

)
φ1 + ∂χ0

∂z
= 0, (58)

which is a rephrase of the continuity equation (40)10. The boundary conditions (42) in terms
of the functions (57) take the form

p

µ

∣∣∣∣
ξ=ξ0

= − 1

r
φ1

∣∣∣∣
ξ=ξ0

, χ0|ξ=ξ0
=

(z
r
φ1 + 2V

)∣∣∣
ξ=ξ0

, (59)

where ξ = ξ0 is the surface of the torus. Representing the functions (57) in accordance to (15),

2p

µ
= 1

c

√
cosh ξ− cos η

∞∑
n=1

Ãn,0 sin nη Pn− 1
2
(cosh ξ),

φ1 = √
cosh ξ− cos η

∞∑
n=1

B̃n,0 sin nη P 1
n− 1

2
(cosh ξ),

χ0 = −√
cosh ξ− cos η

∞∑
n=0

′C̃n,0 cos nη Pn− 1
2
(cosh ξ),

(60)

and repeating steps (18)–(20), we come to a tridiagonal system with respect to variables x̃n,011:

an,0 x̃n+1,0 − bn,0 x̃n,0 + cn,0 x̃n−1,0 = d̃n,0, n ≥ 1, x̃0,0 = 0, (61)

where in the expression (24) for coefficients an,0, bn,0, and cn,0 it must be set γ = 1/2, and
the right-hand side d̃n,0 contains only terms with s̃n,0:

s̃n,0 = −8
√

2

π
V sinh ξ0 Qn− 1

2
(cosh ξ0), n ≥ 1. (62)

The exact solution of (61)–(62) can be obtained as shown in (28)–(33).
Note that by plugging in (57)–(62) a value of the coefficient γ other than 1/2, we obtain

the solution of the elasticity problem where a rigid toroidal inclusion in an elastic space is
subject to a vertical shift of magnitude V .

6.4. ANALYSIS OF THE FLOW AROUND A TORUS AND NUMERICAL RESULTS

In this subsection we present numerical results for the Stokes problem for a torus, using both
solutions presented in the Subsections 6.2 and 6.3. But first we have to discuss the numerical
procedures used for computation of the Legendre functions of the first kind P k

n− 1
2
(cosh ξ) and

expansions of type (15).

10Note that the first equation of (40) is satisfied identically by the representation (57).
11Formulas (18) to (24) were developed for the ‘untilded’ coefficients in (15). Analogous expressions for the
‘tilded’ ones have almost the same form, differing in representations for n = 0.
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According to the asymptotic behavior of the Legendre functions [11, pp. 163–164], func-
tions P k

n− 1
2
(cosh ξ) grow with n and ξ as enξ . Therefore, the use of the integral represen-

tation (16a) for calculating of the Legendre functions may lead to significant inaccuracies,
even at small n. An acceptable degree of accuracy in computing the Legendre functions
P

(0,1)
n− 1

2
(cosh ξ), which are used in the solution of the Stokes problem for a torus, is achieved by

implementing the following recursive scheme:

Pn+ 1
2
(cosh ξ) =cosh ξ Pn− 1

2
(cosh ξ) + sinh ξ

n + 1
2

P 1
n− 1

2
(cosh ξ), n ≥ 0,

P 1
n+ 1

2
(cosh ξ) =cosh ξ P 1

n− 1
2
(cosh ξ) + (n + 1

2
) sinh ξ Pn− 1

2
(cosh ξ), n ≥ 0,

where the functions P
(0,1)
− 1

2
(cosh ξ) are computed using the corresponding integral represen-

tations. Note that due to the exponential growth in n of the functions P k

n− 1
2
(cosh ξ), the

coefficients in the expansions of type (48), (49), (60) must converge at least exponentially
to ensure the convergence of these series, and, as a result, such expansions also exhibit expo-
nential convergence. Therefore, it is usually sufficient to retain about 20–25 terms in a series
of type (48), (49), (60) to achieve the degree of accuracy within 10−6 −: 10−8. To compute
the solution of the tridiagonal system (61), using the technique (28)–(33), we truncated the
infinite series (31) at n = 50.

Let us now proceed with the analysis of the viscous flow due to the translational motion of
a rigid torus in a fluid.

First, we compute the drag force exerted on the surface of the torus, which is the major
integral characteristic of the flow about a body. The drag force is obtained by integrating the
surface tractions over the torus’s surface. Due to the axial symmetry of the problem, the only
non-zero component of the drag force is Fz:

Fz = −2
√

2πµ

{
−h0 +

∞∑
n=1

[
(n + 3

2 )(n + 1
2)gn + (n − 1

2)(n − 3
2)hn

]}

= −2
√

2πµc
∞∑′

n=0

(nÃn − 2C̃n).

(63)

The graph of the drag force Fz, normalized by the drag force of a sphere with radius a equal to
the radius of the outermost rim of the torus, is presented in Figure 2. With ξ0 approaching zero,
the normalized drag force (63) reaches the limiting value of 0·935, which is the normalized
drag force for the so-called ‘closed torus’, i.e. a torus without opening [17]. When ξ0 → ∞,
and torus degenerating into a thin circular thread, the asymptotic value of the normalized drag
force equals to

Fz

6πµV a
∼ 4π

3ξ0
, ξ0 → ∞,

which is the normalized drag force for a thin annulus.
The flux through the torus opening is characterized by the value of constant the λ (56):

Q = −2π

b∫
0

(uz − V ) r dr = −πVλ (64)
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Figure 2. Normalized drag force exerted on the torus and the flux through the torus opening.

Figure 3. Streamlines and isobars of a viscous flow in the vicinity of a torus (b/a = 0·3).

The graph of the flux Q is shown in Figure 2b. When ξ0 approaches infinity, Q becomes equal
to the flux of an unperturbed flow through a circle of radius a. For a closed torus (ξ0 ∼ 0), the
flux Q is obviously zero.

Figures 3a and 3b display the patterns of streamlines and isobars of a viscous flow in the
vicinity of a torus with radii ratio b/a = 0·3. The streamlines are determined as the solutions
to the equation

ψ = −rB = const,

where ψ is the Stokes stream function [6, pp. 94–100]. However, from a numerical point of
view it is better to construct the streamlines as the solutions to the equation

dr

ur
= dz

uz − V0

In the same way, the lines of constant pressure p = const can be obtained from the equation

dr
∂ω

∂r
+ ω

r

= dz
∂ω

∂z

which is derived from the generalized Cauchy-Riemann equations (52).
As the final step in solving the Stokes problem for a torus, we demonstrate that both general

solutions (44) and (57) of the Stokes equations, though being derived in different ways, are
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closely related. Moreover, this relationship can be used to obtain an explicit solution of the
boundary-value problem (57), (59) without solving the tridiagonal system (61).

6.5. RELATIONSHIP BETWEEN SOLUTIONS (44) AND (57)

It is possible to construct an exact explicit solution of system (61) without resorting to the
techniques presented in Section 4. Instead, one may employ the obtained solution of the
boundary-value problem (46) for function B to solve Equations (61).

First, observe that C1 in (47) and φ1 in (57), as the solutions of equation �1(·) = 0, can be
represented by derivatives of some harmonic functions C and φ:

C1 = ∂C

∂r
, φ1 = ∂φ

∂r
, �C = �φ = 0. (65)

Conversely, if ∂C/∂r and ∂φ/∂r satisfy equation �1(·) = 0, then C and φ are harmonic,
provided that all these functions vanish at infinity.

Next, from the system (52) it follows that ϑ = p/µ and ω may also be expressed as the
derivatives of some harmonic function P̃ :

p

µ
= ∂P̃

∂z
, ω = ∂P̃

∂r
, �P̃ = 0. (66)

Then Equation (58) takes the form(
3 + r

∂

∂r
+ z

∂

∂z

)
∂P̃

∂z
+

(
∂

∂r
+ 1

r

)
∂φ

∂r
+ ∂χ0

∂z
= 0.

By virtue of equality {∂ur
∂z

−∂uz

∂r
= ω = ∂P̃

∂r
} we obtain yet another condition on the functions

P̃ , φ, and χ0:(
3 + r

∂

∂r
+ z

∂

∂z

)
∂P̃

∂r
− ∂2φ

∂r∂z
+ ∂χ0

∂r
= 0.

Let us multiply the last two equations by dr and dz correspondingly and, taking into account
that φ is harmonic, add them:

∂χ0

∂r
dr + ∂χ0

∂z
dz =

{
−

(
3 + r

∂

∂r
+ z

∂

∂z

)
∂P̃

∂r
+ ∂2φ

∂r ∂z

}
dr

+
{

−
(

3 + r
∂

∂r
+ z

∂

∂z

)
∂P̃

∂z
+ ∂2φ

∂z2

}
dz.

The obtained equality is nothing but the complete differential of function χ0, which allows us
to express χ0 explicitly in terms of functions P̃ and φ:

χ0 = −2P̃ − r
∂P̃

∂r
− z

∂P̃

∂z
+ ∂φ

∂z
+ const. (67)

To ensure the proper behavior of the functions (67) at infinity, the constant of integration in
(67) must be set to zero: const = 0. On inserting the expression (67) for function χ0 in (57),
the general solution (57)–(58) takes the form
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ur = 1

2

(
r
∂P̃

∂z
+ ∂φ

∂r

)
, uz = 1

2

(
−2P̃ − r

∂P̃

∂r
+ ∂φ

∂z

)
,

which by substitution

P̃ = −2P, φ = −2
∂C

∂z
, (68)

reduces to the general solution (44), (47) with function B. From (65) and the second equality
of (68) it follows that the original functions C1 and φ1 satisfy

φ1 = −2
∂C1

∂z
.

Differentiating function C1 with respect to z yields the relationship between the coefficients
of φ1 and C1:

B̃n,0 = 1

c
{(n + 3/2)Dn+1 − 2nDn + (n − 3/2)Dn−1} , n ≥ 1.

Replacing B̃n,0 in the last equality with x̃n,0 similarly to (19), and expressing Dn by gn and hn,
using Equations (50), we obtain the exact solution of system (61) in an explicit form:

x̃n,0 = − 1

c λn,0

(n − 3/2)(gn + hn) + 3
n∑

j=0

(gj + hj)

 , n ≥ 1. (69)

Note that the form of the solution (69) closely resembles the formula (28) (recall that the finite
sum in (69) can be transformed to the infinite sum using relationships (54) and (55)).

7. Conclusions

We have presented an exact analytical solution of the displacement boundary-value problem
of elasticity for a torus. The original boundary-value problem was ultimately reduced to an
infinite system of algebraic equations with tridiagonal matrices, which are the simplest equa-
tions that can arise in a vector boundary-value problem of elasticity in toroidal regions. The
last proposition rests on two observations: (i) a harmonic boundary-value problem in a toroidal
region function cannot be reduced to an infinite system with less than three diagonals, unless
the value of the sought function is prescribed at the whole boundary, and (ii) the displace-
ment boundary-value problem of elasticity cannot be reduced to pure Dirichlet problems for
harmonic functions. Therefore, the obtained tridiagonal infinite systems can be considered to
represent an exact solution of the original boundary-value problem in terms of the solvability
of basic problems of the potential theory in toroidal regions. Moreover, we have presented two
analytical techniques for solving tridiagonal systems, with one technique being potentially
applicable to systems with a greater number of diagonals.

Reduction of the original displacement boundary-value problem for a torus to equations of
the simplest form was possible owing to the special form of the derived general solution of
the elastostatics equation. This general solution presents the vector of elastic displacement as
a linear combination of a vector and scalar harmonic functions. However, these functions are
not independent and have to satisfy an additional differential constraint. The presence of the
differential constraint to be satisfied by the harmonic functions makes the introduced general
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solution different from other types of general solution of the elastostatics equation. Although
we have concentrated only on the problem for a torus, the developed general approach is
applicable to problems for other bodies described by cyclidal coordinates (lens-shaped body,
spindle-shaped body, and bi-spheres) and will produce similar results.

However, it has been shown that the double-connectedness of the torus may lead to non-
unique solutions of certain vector boundary-value problems, such as elasticity problems that
involve the generalized Cauchy-Riemann equations. In Section 5 we have determined con-
ditions that ensure single-valuedness of the solutions of the generalized Cauchy-Riemann
equations, and have shown that these conditions are satisfied identically for the introduced
form of the general solution.

In the considered example we have presented a complete solution of the Stokes problem for
a torus, using both the traditional stream-function approach and the developed elastic solution.
It has been shown that, in contrast to the presented approach, the stream-function approach
does not yield a single-valued solution, and requires the obtained uniqueness conditions for
the generalized Cauchy-Riemann equations to be satisfied. Finally, we have demonstrated a
direct relation between both types of general solution for the Stokes equations, and used this
relation to derive an explicit solution for the tridiagonal system obtained by application of the
elastic solution to the Stokes problem for a torus.
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Appendix. Exact solution of the boundary-value problem for function �

Coefficients g(1,2)0 and h
(1,2)
0 of (51) have the following form:

g
(1)
0 = 2B∗

ϒ0

{
2P 1

2

(
Q1

1
2

− cosh ξ0 Q
1
− 1

2

)
− cosh ξ0

(
3P− 1

2
Q1

1
2

+ P 1
− 1

2
Q 1

2

)
− 3

cosh2 ξ0

sinh ξ0

}
,

g
(2)
0 = 2B∗

ϒ0

{
−2

3
P 1

2

(
Q1

1
2
+3 cosh ξ0 Q

1
− 1

2

)
+ cosh ξ0

(
P− 1

2
Q1

1
2

+ 3P 1
− 1

2
Q 1

2

)
−3

cosh2 ξ0

sinh ξ0

}
,

h
(1)
0 = 2B∗

ϒ0

{
1

sinh ξ0
− 2P 1

2
Q1

1
2

+ 3 cosh ξ0

(
P 1

1
2
Q− 1

2
+ P 1

2
Q1

− 1
2

)}
,

h
(2)
0 = 2B∗

ϒ0

{
− 1

sinh ξ0
− 2P 1

1
2
Q 1

2
+ 3 cosh ξ0

(
P 1

1
2
Q− 1

2
+ P 1

2
Q1

− 1
2

)}
,

where B∗ =
√

2

π
cV and

ϒ0 = 2P 1
1
2
P 1

2
− 3 cosh ξ0

(
P 1

1
2
P− 1

2
+ P 1

2
P 1

− 1
2

)
.

For n ≥ 1 the expressions for g(1,2)n and h
(1,2)
n are

g
(1)
n = B∗

nϒn

{
− (n + 1

2 )(n + 3
2 )

sinh ξ0
+ Gn

}
, g

(1)
n = B∗

nϒn

{
− (n − 1

2 )(n − 1
2 )

sinh ξ0
+ Hn

}
,

g
(2)
n = 4B∗

3n(n − 1
2 )(n − 3

2 )ϒn

{
− (n − 1

2 )(n − 3
2 )

sinh ξ0
+ Gn

}
,
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h
(2)
n = 4B∗

3n(n + 1
2 )(n + 3

2 )ϒn

{
− (n + 1

2 )(n + 3
2 )

sinh ξ0
+ Hn

}
,

where

Gn = (n − 1
2 )(n − 3

2 )P
1
n+ 1

2
Q
n− 3

2
− (n + 1

2 )(n + 3
2 )Pn+ 1

2
Q1
n− 3

2
,

Hn = (n + 1
2 )(n + 3

2 )P
1
n− 3

2
Q
n+ 1

2
− (n − 1

2 )(n − 3
2 )Pn− 3

2
Q1
n+ 1

2
,

ϒn = (n + 1
2 )(n + 3

2 )Pn+ 1
2
P 1
n− 3

2
− (n − 1

2 )(n − 3
2 )P

1
n+ 1

2
P
n− 3

2
.

In the above formulas all Legendre functions are of argument cosh ξ0.
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